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1 Introduction

Active database management systems (ADBMSs) [e.g., 7, 14, 17, 48] support the specifi-

cation and implementation of reactive behavior. This functionality is commonly defined in

terms of event-condition-action rules (ECA-rules) [17]. The meaning of such a rule is “if

the event occurs and the condition holds, execute the action”. Numerous concepts for sys-

tems and rule definition languages have been proposed [e.g., 4, 9, 11, 12, 19, 23, 30, 40,
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42, 47], whereas less experience exists for the design and implementation of an operation-

al entire active DBMS. Initial approaches, mostly for relational systems, assume rather

simple rule definition and/or rule execution facilities [40, 42, 47], but knowledge about the

design of an active DBMS with powerful rule definition facilities together with elaborate

execution mechanisms (such as nested rule execution) is mostly missing. This is particu-

larly true forobject-oriented,active DBMSs.

Most approaches for implementing an active DBMS make use of an existing DBMS or

parts thereof (ACOOD [2], REACH [5], Sentinel [10], NAOS [11], Ode [23], RDL [40],

POSTGRES [42], TRIGS [28], Starburst [47]). Some of themcustomize andmodify the

base system (NAOS, Ode, Postgres, REACH, Sentinel, Starburst), while others add active

functionality on top of the base system and treat the used DBMS as a black box ([31],

ACOOD, RDL, TRIGS) (layered approach). It is thus not only an open question how to

design an ADBMS in general, but also which architectural style to apply in particular.

This paper investigates the architecture of the active DBMS SAMOS [18] and reports

on experiences with a layered approach. In a nutshell, these experiences are as follows:

• Given an appropriate passive base DBMS, the layered approach is beneficial in terms

of construction cost, since all the passive functionality can be reused, and newly im-

plemented components can make use of it. The disadvantage is the lacking opportunity

to optimize the entire system comprehensively, i.e., runtime performance may be

worse than in an integrated architecture.

• The layered approach is beneficial for activeobject-oriented DBMSs if the base sys-

tem is in turn implemented in an object-oriented way such that functionality to be re-

written can be easily modified or wrapped.

The contribution of this paper is thus twofold. First, it contributes to the knowledge on

ADBMS-architectures. Second, to the best of our knowledge, SAMOS is among the first

full-fledged operational object-oriented ADBMSs, and this paper is the most comprehen-

sive presentation of a layered ADBMS-architecture so far. It thus helps to evaluate and as-

sess the various architectural styles from different perspectives (functionality, construction

cost, runtime performance).

The remainder of the paper is structured as follows. The next section investigates ar-

chitectural styles for ADBMSs and surveys related work. The subsequent section then

deals with specifying reactive behavior in SAMOS. Section 4 describes the SAMOS ar-

chitecture, followed by a brief description of how applications work with SAMOS. Sec-

tion 6 contains an evaluation of the SAMOS architecture and implementation. Section 7

concludes the paper.
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2 The Architecture of Active Database Management Systems

In this section, we describe requirements and architectural approaches for ADBMSs in

general and address related work.

2.1 Requirements

The following list shows which features a database management system should implement

in order to be called “active” [17].

1. An ADBMS must be a DBMS. All the concepts required for a passive system are re-

quired for an ADBMS as well (data modeling facilities, query language, multi-user ac-

cess, recovery, etc.). That means, if a user ignores all the active functionalities, an

ADBMS can be worked with in exactly the same way as a passive DBMS. We then re-

fer to the components realizing the non-active part of the DBMS as “passive compo-

nents”.

2. An ADBMS supports definition and management of ECA-rules. Events (of various

types), conditions, and actions should be definable at the ADBMS interface, and the

ADBMS should manage a catalogue of defined rules.

3. An ADBMS must detect event occurrences. The ADBMS has to implement event de-

tection for all the types of events that can be defined.

4. An ADBMS must be able to evaluate conditions and to execute actions. This require-

ment means that the ADBMS has to implement rule execution.

These features comprise the mandatory features of an ADBMS. Additional optional fea-

tures improve the usability of an ADBMS; they refer to appropriate tool support for devel-

oping and maintaining ADBMS-applications. Starting with section 4, we describe how the

mandatory features and some of the optional ones are actually implemented in SAMOS.

2.2 Architectural Styles

The following architectural approaches for ADBMSs exist:

• implementation from scratch,

• integrated architecture,

• layered architecture.

In the first approach, the ADBMS is implemented from scratch, i.e., all the passive com-

ponents are also newly implemented. This approach is obviously the most costly one.

The second possibility is to use an existing passive DBMS and to modify and extend it

internally. Internal modifications require the availability of the source code. Modifications
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can in principle be made at any place of the DBMS where necessary. The price for this

high degree of freedom is that a profound understanding of the architecture and imple-

mentation of the passive DBMS is indispensable. For systems as complex as a DBMS, this

is usually hard to gain for people who have not built these systems in the first place.

Therefore, this approach is typically only feasible in cooperation with the designers/imple-

mentors of the passive system.

Some approaches to integrated architectures use customizable DBMSs or DBMS-

toolkits. A customizable DBMS is a complete DBMS that can be tailored to meet new re-

quirements. Most functionality is predefined (e.g., the data model), while enhancements

are possible at well-defined places in the system. This approach is feasible whenever all

required customizations are possible at all. Conversely, it is not beneficial whenever the

necessary extensions are not supported by the customization framework.

A DBMS-toolkit defines an architecture model and a set of libraries whose elements

implement certain functionalities of a DBMS. Using a toolkit, reusable components for

some tasks of a DBMS can be selected from a library. Functionality that is not covered by

any of the library elements must be implemented conventionally. Both, reused and newly

implemented components together with some “software glue” are then configured into an

entire DBMS. This approach is in general more flexible than using a customizable DBMS.

It is also intended to provide for a higher degree of reusability of existing components.

The approach is feasible in its ideal form: then most of the components (including the pas-

sive parts) needed for the ADBMS are already available from previous constructions and

can be reused; they thus need not be newly implemented. It is less beneficial when most of

the desired components do not yet exist and thus have to be implemented manually3.

The last possibility is to use an existing passive database management system and to

implement the active behavior on top of this system. In contrast to the other approach, the

reused system is just used as a black box and cannot be modified internally. In contrast to

the toolkit approach, the entire passive DBMS is reused instead of single components.

2.3 Architecture of Existing ADBMSs

Initial work on the architecture of active DBMSs has been done in the HIPAC project [35]

beginning in the mid 80ies. Since then, many proposals for rule definition languages,

3.  This is a well-known situation in software reuse in general: reusability starts to pay off only after a signif-
icant number of constructions have been performed and the collection of reusable components is then
sufficiently large [32].
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event detection techniques, and rule execution models have been made. Nevertheless, pro-

totypical implementations and design documentations are available for a few active

DBMSs only. Particularly, descriptions of operational ADBMSs are rather scarce.

Postgres and Starburst are relational ADBMSs; they have customized an existing

DBMS [42, 47]. In this way, internal interfaces (such asattachments in the Starburst case

[34]) can be used and internal components can be modified if needed. RDL [40] is another

relational system which however has been implemented in the layered style.

Layered approaches for object-oriented systems have been used in [31], in ACOOD,

and in TRIGS [28]. Initial work in that area has been reported in [31], where the imple-

mentation of an active mechanism (conceptually similar to our proposal) on top of the ob-

ject-oriented DBMS GemStone [6] is described. In this work, it has not been possible to

reflect the precise meaning of coupling modes and rule execution (including intra-transac-

tion savepoints) since GemStone does not provide for nested transactions.

The architecture of the Monet ADBMS [29] is classified as a layered one, since Monet

is implemented on top of the Goblin Database Kernel [3]. The active component of Monet

provides solely basic support for ECA-rules (i.e., a restricted set of event types and cou-

pling modes). However, since Monet is intended to be a customizable DBMS, more pow-

erful concepts can be implemented using Monet’s primitives and can be made available at

the end-user interface. Thus, in contrast to other systems surveyed here, Monet itself in-

cluding its active component is acustomizable DBMS, where extensibility is supported by

the Monet extension language.

Integrated object-oriented ADBMSs that have been constructed by internal modifica-

tions of a passive OODBMS are NAOS and Ode. NAOS [11] extends the OODBMS O2

[15]. Similar to [31], the problem in NAOS has been to implement the precise meaning of

rule execution (i.e., coupling modes), since O2 does not provide for nested transactions.

Ode [23] is another example where the passive and the active DBMS are implemented by

the same group of developers.

In the newest version of the REACH ADBMS [5], the DBMS-toolkit OPEN OODB

[46] has been used. In this way, it is possible to customize DBMS-internal components

such as transaction management to the needs of the ADBMS under construction. REACH

supports some functionality that is not offered by SAMOS (more coupling modes), it has

also traded some functionalities for performance (e.g., rules triggering upon composite

events cannot be executed in immediate mode). In order to achieve better performance,

multi-threaded transactions have been used for composite event detection in REACH.

Nested transactions, however, are not yet supported in REACH.



www.manaraa.com

 7

Sentinel [10] also extends the Open OODB system. It uses some of the modules pro-

vided by Open OODB (e.g., the object manager, the persistence manager), but also adds

new modules for other tasks (transaction manager, modules for primitive event detection

and composite event detection). In contrast to REACH, it supports multiple threads and

nested transactions. In Sentinel, therefore, concurrent execution of multiple rules within

multiple threads is possible.

3 An Overview of Rule Definition in SAMOS

This section gives an introduction of rule definition facilities in SAMOS, as far as neces-

sary for understanding the rest of the paper. Details of rule specification have been de-

scribed in [18]. Details of the event definition part of the rule definition language are

further presented in [22].

SAMOS is implemented on top of an object-oriented DBMS (the “underlying sys-

tem”). Hence, when considering the passive part of SAMOS only, it is an object-oriented

DBMS. It thus provides for classes, objects with identity, inheritance, methods, transac-

tions, etc. In addition to the data definition language of the underlying system, SAMOS

provides arule definition language as a means to specify ECA-rules. It includes construc-

tors for the definition of events, conditions, and actions. Events can be defined separately

and used in multiple rules. Rule and event definitions in SAMOS have the following form:

DEFINE RULE <rule_name>
ON <event_clause>
IF <condition>
DO <action>
COUPLING MODE “(“ <coupling>, <coupling>”)”
PRIORITIES (BEFORE | AFTER) <rule_name>

DEFINE EVENT <event_name> <event_def>

Figure 1: Part of the Rule Definition Syntax in SAMOS

Rule or event definitions specifyevent descriptions. Event descriptions can be defined

implicitly in rules, or explicitly using theDEFINE EVENT clause. An event description can

be regarded as the intension of a set of similar event instances of interest. Instances of

event descriptions are the actual events happening at a given point in time; they are also

calledevent occurrences. Subsequently, we simply refer to “events” whenever it is clear

whether eventdescriptions or eventoccurrences are meant.
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Event descriptions can beprimitive or composite. SAMOS distinguishes the following

kinds of primitive events:

• method event: occurs at the beginning or the end of a method execution,

• transaction event: occurs before or after a transaction operation (begin, commit, or

abort transaction),

• time event: occurs at a specific point in time (absolute time event), periodically (peri-

odical time events), or as soon as a specified time interval following another event oc-

currence has elapsed (relative time events), and

• abstract event: “occurs” when explicitly signalled from outside the ADBMS (by the

user or application).

Event descriptions are parameterized. The actual parameters that represent relevant infor-

mation are bound to the formal ones after the event occurrence. The set of formal parame-

ters are fixed (except for abstract events). SAMOS supports the following event

parameters:

• occurrence time: the point in time when the event occurred (occ_time),

• transaction: the transaction in which the event occurred,

• object: the object to which the message has been sent in case of method events,

• user: the user who executed the transaction which contained the event occurrence.

Not all these parameters are applicable for all the kinds of event descriptions (see Table 1).

In addition to the receiver object, method events have the arguments to the method call as

parameters.

Furthermore,monitoring intervals can be specified for event descriptions. A monitor-

ing interval defines a start and an end point (e.g., time events). If a monitoring interval is

given for an event description then only those occurrences are considered that happen

within the monitoring interval.

event description occ_time object  transaction user

method x x x x

transaction x - x x

time x - - -

abstract x - x x

Table 1: Event parameters of primitive events
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Composite events occur if one or more other (primitive or in turn composite) compo-

nent events have occurred. Composite event descriptions can be specified by one of the

following constructors:

• conjunction: occurs when both component events have occurred; itsocc_time corre-

sponds to theocc_time of the component event that happens second,

• disjunction: occurs when one of the two components has occurred; itsocc_time corre-

sponds to theocc_time of the component event that happens,

• sequence: occurs when the two component events have occurred in the specified order;

its occ_time corresponds to theocc_time of the second component event,

• negation: occurs when the component hasnot occurred within a specified time inter-

val; itsocc_time corresponds to the end point of the interval,

• times: occurs when the component event has occurred a given number of times (sayn)

within a certain time interval; itsocc_time corresponds to theocc_time of then-th

component event,

• closure: occurs when the component event has occurred for the first time within a

specified time interval; it is signalled exactly once if the component event occurs at

least once. Itsocc_time corresponds to theocc_time of the first component event.

Monitoring intervals are mandatory for negation but optional for the other cases. Further-

more, event parameters are relevant for composite events, too. They can be used to define

additional constraints for a composite event and its components. It can be specified in the

composite event description that all of its components have to occur

• within the same transaction (same transaction restriction),

• within transactions started by the same user (same user restriction),

• for the same object (same object restriction), which is applicable only for method

events as components.

After an event has been detected, the conditions of related rules are checked. If they hold,

the corresponding actions are executed. Both, conditions and actions must be specified in

the data manipulation language (DML) of the underlying ooDBMS.

The transaction where an event occurrence happens is called thetriggering transac-

tion of the event. The transaction that is executed in order to perform condition evaluation

and action execution is called thetriggered transaction. The temporal and causal relation-

ships between these two kinds of transactions are specified usingcoupling modeswhich

define when the triggered transaction is executed with respect to the triggering one, and

whether abort/commit dependencies exist between them. Each rule defines two coupling
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modes: one for the event-condition coupling, and one for condition-action coupling. Pos-

sible modes for event-condition coupling are

• immediate: the condition is evaluated directly after the triggering event has been de-

tected and within the same transaction,

• deferred: the condition is evaluated at the end of the triggering transaction, but before

commit,

• decoupled: the condition is evaluated in a separate transaction which will be scheduled

independently by the ADBMS.

For condition-action coupling, the coupling modes have the following meaning:

• immediate: the action is executed directly after the condition evaluation and within the

same transaction,

• deferred: the action is executed at the end of the triggering transaction, but before

commit,

• decoupled: the action is executed in a separate transaction which will be scheduled in-

dependently by the ADBMS.

It may be the case that multiple rules are defined for the same event and with the same

coupling mode (immediate or deferred). In this case, priorities define the order to be im-

posed on the execution of the rules.Priorities form a partial order on rules. Rules that are

not (transitively) ordered by priorities are executed in an arbitrary (system-determined) or-

der.

Note that events can also occur during rule execution, i.e., rules can trigger further

rules. Thus, SAMOS is able to performnested rule execution.

4 The SAMOS System Architecture

In this section, we describe the SAMOS system architecture. SAMOS is operational on

SUN machines running under the SUNOS4 operating system [44] (i.e., SUN’s Unix5 oper-

ating system).

SAMOS consists of three layers (Figure 2):

• the object-oriented DBMS ObjectStore5,

• the SAMOS kernel implementing the active functionality, and

• a set of tools supporting users in applying the active functionality of the SAMOS ker-

nel.

4.  SUNOS is a registered trademark of SUN Microsystems. Unix is a registered trademark of AT&T.

5.  ObjectStore is a registered trademark of Object Design Inc.
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The three layers together implement the requirements given in section 2.1, i.e., the manda-

tory features of an ADBMS and some of the optional ones.

In the following, each layer will be discussed in detail.

4.1 ObjectStore

ObjectStore [33] is a commercial OODBMS. It extends C++ [43] with database function-

ality (most important: persistence, a query processor, indexing, clustering, and transaction

management).

Specifically, ObjectStore supports closed nested transactions [36]. Nested transactions

can in turn execute transactions (which are then called subtransactions). Transactions that

do not contain subtransactions (but only database operations) are calledleaf transactions.

Transactions that are not subtransactions of any other transaction are calledroot transac-

tions (top-level transactions). Changes performed on behalf of subtransactions become

permanent only if and when the root transaction commits. If a nested transaction aborts,

all its subtransactions are rolled back as well.

Compiler

Rule/Event Definitions

Figure 2: The Architecture of SAMOS

ObjectStore

Data/Rulebase

SAMOS Kernel

Browser Editor Analyzer
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Subtransactions block their parent, and ObjectStore does not support parallelism

among sibling transactions (i.e., ObjectStore provides for neither sibling parallelism nor

for parent/child parallelism [27]).

4.2 The SAMOS Kernel

The most important components of the SAMOS kernel are (Figure 3):

• a rule manager for the storage and retrieval of information about event and rule defini-

tions,

• adetectorfor compositeevents,

• a new classsamTransaction for SAMOS’ own transaction management on top of

ObjectStore,

• a rule execution component for condition evaluation and action execution.

Composite Event Detector
Rule Execution

Component

 Clock/Application

Figure 3: The Component Architecture of the SAMOS Kernel on top of ObjectStore

ObjectStore

Data/Rulebase
event signalling

event/rule objects retrieval and storage

rule execution

SAMOS-
Transactions

Rule Manager
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4.2.1 The Rule Manager
The rule manager is responsible for persistently storing and retrieving information on

rules and events. It is represented by an object, an instance of the classCRuleManager.

Event descriptions and rules are also represented as objects [18]6, calledevent objects and

rule objects, respectively. They are stored in the so-calledrulebase, which in turn is a part

of the database. Both, event and rule objects have an identity and the rule manager can

manipulate and access them like any other object by means of methods. Since all these ob-

jects are stored in ObjectStore and manipulated within transactions, atomicity and durabil-

ity is automatically supported for operations on the rulebase.

Event and rule objects are created using the methods offered by the rule manager (see

Figure 4). These methods are used by the rule compiler if the rule definition language has

been used to specify rules and events. In this case, rule and event objects are created auto-

matically. Alternatively, a programmer can create these objects “manually” if she uses the

interface of the rule manager for the definition of rules instead of the rule definition lan-

guage.

Event and rule objects are persistently stored in so-calledevent extentsand rule ex-

tents.In ObjectStore terminology, an extent is a collection of currently existing, persistent

instances of a specific class. Hash indexes are defined for the event and rule extents. Fur-

thermore, all event objects are clustered in an ObjectStore segment, which also contains

6.  This is similar to the proposals in [1, 4, 13, 16].

class CRuleManager
{
  public:
// some methods for primitive event creation

TStatus DefAbstrEvent(char EventName[]);
TStatus DefTransEvent(char EventName[], TTransMode Modus);
TStatus DefMethEvent(char EventName[], char className[], char MethName[],

                                                 char HeaderFileName[], char ImplFileName[],
                                                 eventBeforeAfter BeforeAfter);

TStatus DefAbsTimeEv(char EventName[], time_t occp);
// some methods for composite event creation:

TStatus DefDisj(event* ev1, event* ev2, char disj[]);
TStatus DefConj(event* ev1, event* ev2, char conj[], TSameClause option);

//method for rule creation
TStatus DefineRule(char RuleName[], event* Ev, condition* Cond,

action* Act, couplingMode eccMode, couplingMode cacMode);
}

Figure 4: Class Definition of the Rule Manager
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the event extent index. These measures are applied in order to accelerate the access to

event objects.

4.2.1.1 Storage of Event Descriptions

All user-defined event descriptions are instances of the classevent (Figure 5). Event ob-

jects can be created, updated and accessed through methods implemented by the rule man-

ager (Figure 4). Various subclasses ofevent are defined for the different kinds of event

descriptions (e.g., method events, conjunctions, and so forth). A detailed description of

this class hierarchy can be found in [20]. Each event has the attributename (user- or sys-

tem-defined). The attributelist_of_rules determines the rules (i.e., references to ob-

jects of the classrule) that have to be executed when this event has occurred. Other

systems (e.g., ADAM [16], Ode [23]) associate the rule with the objects or classes on

whose operations the events are defined. However, this approach is feasible only for (some

kinds of) primitive events (e.g., method events), because only then such a rule association

exists. In SAMOS we thus associate rules with event descriptions. This approach is more

general since it can be used for all sorts of events, primitive and composite ones.

Whenever there are multiple rules triggering upon a specific event, SAMOS has to de-

cide on the order of rule execution upon an occurrence of this event. This execution order

is constrained by the coupling modes and can be further determined by user-defined prior-

ities. If there are still multiple possibilities, the execution order is determined by SAMOS.

In order to avoid “sorting” of rules at runtime, the structure oflist_of_rules already re-

flects execution constraints (condition evaluation coupling mode). For each event, rules

with decoupled mode are stored at the top of the list, since their triggering transactions

are spawned first. The second group of rules are those withimmediate conditions.De-

ferred rules are stored at the end of this list. In the latter two cases, rules with the same

coupling modes are ordered according to their priorities.

list_of_rules: {    }
name:

event

rule

name:
couplingEC:
couplingCA:
priorities:
condition:
action:

Figure 5: A Part of the Rule Schema

...
composite_event:{    }

condInd:
ActionInd:
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Finally, the attributecomposite_event determines the composite events in which this

event participates.

4.2.1.2 Storage of Rules

Rule definitions are stored as instances of the classrule (rule objects). The attributes of

rule objects include a name, the coupling modes, priorities, and the condition as well as

the action. For the latter two, references to files containing the source text of conditions

and actions are stored in addition to the storage of these texts in rule objects (attributes

condInd andactionInd). This redundancy has been chosen in order to support rule mod-

ification and browsing (using the information in rule objects) as well as compilation of

rule implementations equally well (using the source text in files).

Upon rule execution, the executable code fragments for conditions and actions must be

found and executed. The textual representation is of no use in this situation. Additionally,

it is not feasible to call functions by their name and let the runtime system find the correct

main memory address in the linked program code. Since the names of conditions and ac-

tions as well as the number of them is not known at the compilation time of the SAMOS

kernel, the rule manager itself would have to be re-compiled upon each rule definition, de-

letion, or modification. In other words, the problem is to enable modifications of ADBMS-

behavior at runtime under the condition that the programming language compiler and link-

er cannot be extended. Note that dynamic linking, on the other hand, is not covered by the

C++ standard up to now, and is therefore not considered as a possibility either.

The solution of SAMOS is as follows (see Figure 6). A function type including a fixed

set of formal parameters (i.e., the set of all C-functions with a given set of formal parame-

ters) is defined for conditions and actions, respectively. For each condition and action

specified in a rule, a C++-function is generated whose signature conforms to that function

type and whose body implements the condition (action). The source text of these C++-

functions is stored consecutively in two files. References to the functions are stored in an

array of function pointers. The index of a function pointer in this array is recorded in an at-

tribute value of the corresponding rule object (the attributescondInd andactionInd in

Figure 5). In order to execute a function, its index has to be found through the correspond-

ing rule object, the function pointer has to be retrieved from the function pointer array, and

the pointer finally has to be de-referenced.

In this approach, the following tasks have to be performed by SAMOS whenever a

new rule is defined:

• extension and compilation of the condition and action files,
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• extension and compilation of the function pointer array,

• linking of the modified parts with the SAMOS kernel.

4.2.1.3 Event and Rule Retrieval

Apart from storing event and rule objects, the rule manager is also responsible for retriev-

ing these objects efficiently.

Retrieval of event objects takes place after the occurrence of one or more events have

beensignalled. The rule manager is informed about event occurrences through the receipt

of the messageraise_event. The various event detectors are the possible senders of this

message (see section 4.2.3). The rule manager then reacts by performing the following ac-

tions:

• retrieval of the corresponding event objects,

• invocation of the composite event detector,

• retrieval of rule objects, and eventually invocation of the rule execution component.

After an event has been signalled, the rule manager is responsible for determining rules to

be executed, and composite events the occurred event participates in. This information is

available on the level ofevent descriptions. Therefore, upon signalling of an event, the

cond0 ...
cond1 ...
cond2 ...

act0 ...
act1 ...
act2 ...

R1

R2

Rule Objects Function Pointer Arrays Code Files

Figure 6: Management of Code Fragements for Conditions and Actions



www.manaraa.com

 17

rule manager has to find the appropriate event description, i.e., the appropriate event ob-

ject. Parameters of the event signalling function (raise_event), such as the event de-

scription name, are used for this.

In general, the rule manager will retrieve exactly one event object for the signalled

event occurrence. In special cases, however, such a corresponding event object might not

exist, because neither a rule has been defined for the event nor does the event participate in

a composite event. We call such events “non-interesting” events. Obviously, the signalling

of non-interesting events should be avoided for efficiency reasons. In SAMOS, for some

sorts of primitive events only interesting events are signalled (e.g., for method events and

time events); however, this is not possible for transaction events.

Let us now assume that an event object has been found. In this case, the rule manager

next determines whether the event participates in a composite event (expressed through

references in the attributecomposite_event). If yes, the composite event detector is in-

formed about the event occurrence.

Furthermore, the rule manager determines whether a rule is defined for the event,

which is expressed through the attributelist_of_rules. If yes, the set of rules defined

for the event is retrieved. The rule execution component is invoked with this list of rules

as a parameter.

Efficient retrieval of event objects is a crucial performance requirement, especially if

numerous event descriptions have been defined. In SAMOS, access to the set of event ob-

jects is tried to be optimized in three ways:

• retrieving event objects only for interesting events,

• using indexing techniques for the set of event objects,

• clustering event objects together.

4.2.2 SAMOS Transactions
In ObjectStore, each transaction is represented as an instance of the class

os_transaction. Operations on (sub)transactions are implemented as methods of this

class (e.g.,os_transaction::begin starts a new transaction). For use in SAMOS, the

transaction management of ObjectStore must be extended for two reasons:

• transaction events must be signalled,

• rules must be executed before commit in case of thedeferred coupling mode.

Since it is not possible to override the transaction statements in ObjectStore, SAMOS de-

fines a new classsamTransaction (Figure 7). This class defines methods to start, commit,

and abort transactions. These three methods implement the transaction functionality using
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ObjectStore’s transaction operations, but also add code in order to implement event sig-

nalling and rule execution properly.

SAMOS requires applications to use the functions of this class instead of those provid-

ed by ObjectStore. In other words, SAMOS users are not allowed to use ObjectStore

transactions directly. Otherwise, transaction events would not be signalled, and correct

rule execution would not be possible.

Each samTransaction instance contains a reference to an associated ObjectStore

transaction (ostx). The instance variablelist_of_rules of classsamTransaction refer-

ences rules with thedeferred mode which have to be executed before this transaction

commits. Furthermore, each element of this list contains a flag determining whether the

condition has already been evaluated.

The operationraise_event is invoked within each transaction operation (begin,

commit, abort). In this way, transaction events are signalled. In addition, the respective

operations of classos_transaction are called.

Finally, the attributelevel is used to restrict the height of transaction trees for the fol-

lowing reason. Since SAMOS provides for nested rule execution, it may happen that sev-

eral rules mutually trigger each other and thus rule execution does not terminate. Since

conditions and actions are in turn executed within (sub)transactions, a transaction tree of

indefinite depth would be the result. Therefore, restricting the depth of transaction trees

breaks cycles during rule execution. Rule execution is thus guaranteed to terminate at least

for those cycles that do not contain rules withdecoupled mode.

The database administrator (DBA) can specify an upper limit for the nesting depth of

transactions. For each transaction, SAMOS records its depth (i.e., the number of ancestors

class samTransaction {
public:
os_transaction *ostx; // pointer to ObjectStore transaction
int user;
int level;
char * name;
os_list<ruleExec*>list_of_rules; // transaction rule register. ruleExec contains
... // a flag “condYetEval” and a pointer to a rule
samTransaction (int mode); // the constructor, starts a samTransaction
static samTransaction begin; // starts a samTransaction
static commit(samTransaction * stx); // commits a samTransaction
static abort(samTransaction * stx); // abort a samTransaction
addRule(Rule * newRule, int condYetEval);

// add newRule to transaction rule register
};

Figure 7: Definition of ClasssamTransaction
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it has) in thelevel attribute, and the start of a new transaction is only allowed if its level

value does not exceed the limit specified by the DBA. If no limit has been specified by the

DBA, transactions can be nested arbitrarily deep, at least as far as SAMOS is concerned.

4.2.3 The Event Detectors
Event detection refers to the task of noticing the occurrences of events and signalling

them. Event detection is realized differently depending on the various kinds of primitive

event. Additionally, the composite event detector covers composite events.

4.2.3.1 Primitive Event Detectors

In the case of method events, the original method is modified by SAMOS in order to sup-

port event detection. The new method contains statements for the signalling of the respec-

tive event at its beginning and/or before each return statement. After the modification has

been performed, the method implementation needs to be recompiled.

In order to detect time events, appropriate entries are inserted into thecrontab system

file provided by the Unix operating system. These entries are generated automatically by

the rule compiler from time event definitions, and are inserted into the crontab file by the

compiler. This file is used by thecron process to monitor the system clock and to perform

specified actions at specific points in time. In SAMOS, acrontab entry has the form

(<time>,<action>) wheretime specifies the point in time when the time event must be

signalled.action contains the call of a function which informs the rule manager about the

occurrence of a time event. Details of detection of time events can be found in [22].

Event detection for transaction events is performed within thesamTransaction oper-

ations described above. Note that SAMOS-transactions signalany transaction event, re-

gardless whether the event is actually an interesting one or not.

4.2.3.2 The Composite Event Detector

This component is responsible for the detection of composite events, which can generally

be implemented in two alternative ways:

• either the composite event detector stores all occurrences in a log, and upon each new

primitive event occurrence queries the log in order to determine new composite event

occurrences, or

• the composite event detector performsstepwise detectionin that it knows for each

composite event the ordered sequence of primitive events that have to occur in order to

let the composite event occur.
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Stepwise detection is considered to be more efficient with respect to execution time

and space required for the storage of event occurrences. Once a (primitive or in turn com-

posite) event has been signalled, the detector checks whether a “step forward” in any of

the ordered sequences can be made. If the last element of such a sequence has been added,

the corresponding composite event is considered to have occurred. It is thus not necessary

to consider the entire event log. Furthermore, “garbage collection” of occurrences that

cannot be used in the future is more straightforward in this approach.

In SAMOS, we have thus implemented stepwise detection. This approach requires a

model which allows the representation of sequences of primitive events and of detection

states in the system. In SAMOS, we use Colored Petri Nets (a special kind of Petri Nets).

For each kind of composite eventconstructor, a Petri Netpatternhas been defined. When-

ever a new composite event description is created, the appropriate pattern is instantiated

for it. All instantiated patterns are combined into a large, not necessarily connected, Petri

Net.

For the sake of brevity, we give only an outline of the composite event detection pro-

cess; details can be found elsewhere [21, 22]. The composite event detector is informed

about interesting primitive events by the rule manager. In Petri Net terminology, the com-

posite event detector then marks the input places corresponding to the primitive event. It

then begins to play the token game. Tokens have as attributes the event parameters such as

the identifier of the triggering transaction, the time of the occurrence, the identifier of the

receiver object in case of method events, etc. Each time a place is marked with a token, the

detector checks whether a transition can fire. As a result of the token game, output places

representing a composite event can be marked. In this case, the composite event detector

informs the rule manager about the occurrence of those composite events (through the op-

erationraise_event).

A composite event occurrence is composed out of component events. Theconsump-

tion mode [8] thereby determines which events are considered for event composition, and

how the attributes of composite events are constructed out of the attributes of the compo-

nents. The composite event detector in SAMOS implements thechronicle consumption

mode [8], i.e., if not specified otherwise by event restrictions, always takes the oldest oc-

currence of an event description. The firing of transitions can be further constrained by re-

strictions (so called guards), such as thesame transaction restriction for the component

events.

The object-oriented approach of the SAMOS-architecture suggests an object-oriented

representation of the Petri Net components (transitions, places and arcs are represented as
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objects). In addition, since event occurrences must be stored until they are used in the sig-

nalling of all corresponding composite events, and event occurrences are represented in

the Petri Net as tokens, the appropriate tokens must be kept persistent. For this reason, to-

kens are represented as (persistent) objects as well.

4.2.4 The Rule Execution Component
After an event has been signalled and the rules to be executed have been determined, the

rule execution component is invoked in order to actually execute these rules.

Assume an event (primitive or composite) has occurred. The rule manager determines

whether rules are defined for this event and retrieves the corresponding rule objects. These

objects as well as condition and action code fragments are determined through the refer-

ences included inlist_of_rules(Figure 5). Each rule object contains all further relevant in-

formation such as coupling modes. The rule execution component (REC) is called with

the list of references to rules to be executed and the triggering transaction as parameters.

The tasks of the rule execution component depend on the coupling modes of the rules.

In any case, each single rule execution starts with the condition evaluation. The rule exe-

cution component reads the coupling mode of the condition, which is stored in the rule ob-

ject, and works as follows:

1. If the coupling mode isimmediate, REC determines the index of the condition func-

tion and then calls this function directly.

2. If the coupling mode isdeferred, the triggering transaction is notified to add the con-

dition evaluation in its transaction-specific rule register (recall the classsamTransac-

tion described in section 4.2.2).

3. If the coupling mode isdecoupled, a new top-level transaction for evaluating the con-

dition is started.

Multiple rules may trigger upon the same event. In this case, SAMOS determines and

enforces the execution order based on the information on coupling modes and priorities.

Recall that this ordering is already reflected in the structure of the attribute

list_of_rules for event objects (section 4.2.1.1).

In thedecoupled case, independent transactions are started directly after the event oc-

currence. In contrast to the cases ofimmediate anddeferred rules, SAMOS does not

wait for their termination, and priorities are not controlled by SAMOS. Since it is not pos-

sible in ObjectStore to start new top-level transactions from within a running transaction,

such independent transactions are started by a demon process.
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In theimmediate coupling mode for condition evaluation, triggered transactions are

executed as subtransactions of the triggering transaction. They are started directly after the

decoupled rules have been spawned (or directly after the event occurrence has been de-

tected, if there are nodecoupled rules). The execution order of these subtransactions is

determined by the priorities of the corresponding rules. Since in the current implementa-

tion only one subtransaction can be active at one point in time, priorities also determine

the sequential execution order of triggered transactions.

Finally, in thedeferred coupling mode, SAMOS uses a transaction-specific rule reg-

ister (the instance variablelist_of_rules in Figure 7). This rule register implements a

queue that includes all references to rule objects that have to be executed at the end of this

transaction. The order in the rule register determines the execution order of the rules. Note

that, depending on the respective coupling modes, “rule execution” may refer to the exe-

cution of condition or action parts only.

4.2.5 The SAMOS Demon
Decoupled rules must be executed in newly started top-level transactions. In ObjectStore,

it is not possible to start new top-level transactions within another running transaction. In

order to properly implement thedecoupled mode, SAMOS thus uses ademon process.

The process architecture of SAMOS thus comprises two concurrent processes: theker-

nel process which executes the proper SAMOS kernel, and the demon process whose pri-

mary task is to execute decoupled rules. The demon process is in fact a “duplicate' of the

kernel process because it operates instances of all the components described above for the

SAMOS kernel. On a technical level, the major difference between both processes is

whether they issue or accept requests for decoupled rule execution. Both, the demon and

the kernel process share data- and rulebases. The kernel process uses the inter-process

communication facilities of Unix to communicate with the demon (see Figure 8).

After a request for the execution of a decoupled rule has been received by the demon,

control remains in the demon until this rule is entirely processed. In particular, if further

events occur within the decoupled rule execution, then these events are processed by the

demon (and so forth transitively). It can then also happen that the demon executes further

rules in any coupling mode. Furthermore, component events occurring during the execu-

tion of a decoupled rule can be detected by the demon process. These component events

have to be “merged” with the component events detected by the kernel process, in order to

maintain a uniform history of events. This merge is performed in that the demon updates

the Petri Net upon component event occurrences. Thus, both, the kernel and the demon are
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synchronized via the shared rulebase. The possibility that component events may need to

be handled and nested rule execution has to be performed is the reason for the demon to

operate all the components described above for the kernel (event detection, event and rule

object retrieval, and rule execution).

In order to abstract from the concrete communication facilities used, SAMOS defines

a new classsamDemon, which provides for the necessary functions. First, its methods im-

plement the connection of the kernel and the demon to the communication channel. For

the kernel process, the methodsamDemon::send allows to send messages concerning

rules to be executed indecoupled mode to the demon. For the demon,samDemon::re-

ceive implements a blocking read of the communication channel. Whenever the demon

receives a message via the communication channel, it reacts by executing the specified

condition and/or action. The interprocess communication mechanisms currently used are

named pipes [41].

4.3 Flows of Control in SAMOS

Based on the component descriptions in the previous section, we now describe the control

flows through SAMOS after primitive event detection.

4.3.1 Execution of Single Rules
The interaction of the various SAMOS components is best illustrated by considering the

following three phases:

• event detection,

• rule retrieval, and

Data/Rulebase

kernel process demon process

communication channel

Figure 8: SAMOS Kernel and Demon Process Structure
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• rule execution.

The simplest case is a primitive event occurrence that (1) does not participate in any com-

posite event, (2) has only one rule defined for it, and (3) is associated to a rule with cou-

pling modes (immediate, immediate). According to the execution model of SAMOS,

three phases have to be executed in this case (Figure 9):

1. the primitive event detection phase ends with the signalling of the event,

2. the rule manager reacts to the event signalling and performs rule retrieval, and

3. the rule execution component performs the rule execution phase.

In Figure 9 and the following ones, we represent the structure of triggering (user) transac-

tions as transaction trees (the execution order obtained using a depth-first left-to-right tra-

versal of the trees). Triggering user transactions are represented by horizontal lines;

subtransactions executed by and within the SAMOS kernel are represented as circles. Cir-

cles with a solid shape represent ObjectStore transactions, and bold, dashed circles repre-

sent SAMOS transactions. The various tasks refer to composite event detection (CED),

rule retrieval (RR), and rule execution (RE). If rule execution is considered in more detail,

we refer to condition evaluation (CE) and action execution (AE). Note that signalling of

primitive events is done within triggering transactions.

All other cases (for composite events, multiple rules per event, and different coupling

modes) are variations of the scheme in Figure 9. First, consider a primitive event occur-

rence that also contributes to a composite event. In this case, executing the rule attached to

the primitive event first and then performing composite event detection would not be cor-

rect. For instance, the rule attached to the primitive event could raise further events, which

might in turn participate in the composite event. Since the first primitive event occurrence

would not yet be handled by the composite event detector, this component would permit

primitive event occurrences to overtake each other, and the resulting event history as de-

tected by the composite event detector would not be correct (i.e., would not be a sequence

of occurrences ordered according to their occurrence time). In other words, SAMOS

Figure 9: Phases of Active Behavior

event signalling

RR RE

triggering
transaction
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would in this case not implement the consumption modechronicle [8] correctly. Out of the

same reason it is not correct to signal composite events and to perform rule execution as

soon as a composite event has been detected. Instead, the composite event detector has to

play the token game until a final state of the composite event detector has been reached.

This means that event detection has to be performed completely within the first of the

three phases (Figure 10a).

In the second phase — rule retrieval — all rules to be executed for the signalled events

are determined. Rule execution begins only after this phase terminates. In other words,

both, event detection and rule retrieval are executed in one coherent phase, respectively.

This is not always the case for rule execution, as is discussed subsequently.

Execution even of a single rule can be split into two non-successive phases, namely

whenever the coupling modes are(immediate,deferred) or (immediate,decoupled).

In this case, control returns to the triggering transaction after condition evaluation, and

rule execution (for this rule) is continued after the commit request (Figure 10b) in the case

of adeferred action.

If the coupling mode of the condition isdecoupled, the condition is evaluated in a

new top-level transaction started by the demon, which then also performs action execution

if necessary at all. If the condition coupling mode is immediate or deferred, but only the

action is decoupled, then the condition is evaluated in a subtransaction of the triggering

transaction. If the condition evaluates to true, then the demon is notified to execute the

corresponding action.

Another case where rule execution is split into several (possibly non-successive) phas-

es is the execution of multiple rules triggered by the same event, as discussed below.

Figure 10: Execution of Single Rules

a) composite event detection
b) rule execution with immediate

condition and deferred action

event signalling

RR RECED

event signalling

RR CE AE

commit request
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4.3.2 Execution of Multiple Rules
Multiple rules with immediate coupling modes, all triggered upon the same event, are ex-

ecuted after the corresponding rule objects for this event have been found (Figure 11a).

All rules with condition coupling modeimmediate are executed one after the other. Their

execution order is determined either by user-specified priorities, or by SAMOS. For each

condition, its corresponding action is executed directly afterwards if the evaluation has re-

turnedtrue. After the last immediate condition has been evaluated and its action has pos-

sibly been executed, control returns to the application.

Control returns to REC upon the commit request of the triggering transaction. Then all

remaining actions are executed (Figure 11b). Actions indeferred mode whose corre-

sponding conditions have been evaluated immediately and that have been evaluated to

true are then executed. After the last such action has been executed, conditions with cou-

pling modedeferred are evaluated. If a specific condition evaluates to true, its action is

executed directly afterwards, provided the coupling mode isimmediate or deferred.

4.3.3 Nested Rule Execution
Execution of multiple rules triggered by the same event can be interrupted due to nested

rule execution (Figure 12). In this case, an event occurs within the execution of a rule and

leads to the execution of conditions and actions as subtransactions of the triggered transac-

tion. In the example, assume that a primitive evente1 occurs that causes two composite

eventse2 ande3 to occur. Each event has a rule defined (r1, r2, andr3). Within the action

execution ofr1, another evente4 occurs that triggers ruler4. Then,r4 is executed as a

subtransaction ofr1, i.e., before rulesr2 andr3. In other words, while the sequence of de-

Figure 11: Execution of Multiple Rules
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a) multiple rule executions
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b) rule execution with immediate and

deferred rules

immediate deferredRR RE

event signalling commit request



www.manaraa.com

 27

tected events is<e1,e2,e3,e4>, the corresponding rule execution sequence is

<r1,r4,r2,r3>.

All coupling modes are allowed for nested rules. These coupling mode then refer to

their triggering transactions —which are themselves triggered transactions— instead of

the triggering transaction of the top-level rule. This is different in NAOS [11]: nestedim-

mediate rules are executed within the triggering rule execution, whiledeferred ones are

executed at the end of the transaction that triggered the top-level rule (recall that NAOS

does not support nested transactions).

4.4 The SAMOS Tools

A set of tools supports the user during the development and the maintenance of SAMOS

applications. Some of these tools are mandatory to support (a compiler for the rule defini-

tion language and an analyzer for checking the correctness of rulebases), while others are

“nice to have” (a rule editor and a rulebase browser).

4.4.1 The Rule Compiler
The rule compiler is responsible for the syntactic and semantic analysis of rule definitions.

Its input are event and rule definitions in the syntax of SAMOS’ rule definition language.

If syntactic and semantic analysis have been successful, the compiler uses the interface of-

fered by the rule manager to create corresponding event and rule objects.

Figure 12: Nested Rule Execution
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4.4.2 The Rule Analyzer
The rule analyzer assists users in checking the termination of rules. It supports static and

dynamic analysis.Static analysis means that rule definitions are examined at compile

time, whiledynamic analysis investigates the behavior of a set of rules at runtime.

During static analysis, the relationship graph of a set of rules R is built. This is a di-

rected, labeled graph where the nodes represent the rules. The edges symbolize the action/

event relationships between the rules, i.e., the fact that an action of one rule lets the event

(or part of the event) of another one occur. An edge between two rules is calledfirm if the

execution of the source rule definitely causes the execution of the target rule. An edge is

termedpotential if the execution of the source rulemay cause the execution of the target,

e.g., depending on whether the condition is true or false. If the graph includes a cycle and

all edges are firm, then R will never terminate; we call R ahard-nonterminating set. In this

case, the user has to modify the rule definitions in R and rule analysis must be done again

from the beginning. The case when at least one edge is potential indicates possible nonter-

minating rule sequences and requires further dynamic analysis to establish if the cycle is a

real one. R is then called asoft-nonterminating set. In this case, additional information

may be provided through the investigation of the action/condition relationships. We say

that an action/condition relationship exists between two rules if the action of one rule may

influence the condition of the other one. The consideration of such relationships is often

crucial in deciding whether the rules in a soft nonterminating set form a cycle.

Dynamic analysis in SAMOS is based on simulation. The simulator generates a stream

of event occurrences of interest for the given event definitions and rule execution scenari-

os in case of multiple rule definitions. The simulation is applied for some relevant initial

database states, which are generated using the set of conditions derived from the given set

of rules. The analyzer monitors the behavior of rules during the simulation and checks

whether the same rule sequence belonging to a soft-nonterminating set repeats for a cer-

tain finite number of stepsn.

Static analysis provides only incomplete information about the real interactions during

the operation of a SAMOS application. Conclusions derived at compile time are only sup-

positions about interactions which could take place between rules, and in many cases the

probability of such interactions is actually very small. Dynamic analysis helps to find

more information about real rule interactions. However, rule analysis cannot be done com-

pletely. The rule analyzer notifies the user that a certain subset of rules could fall in a cycle

and the user can decide himself whether the cycle is a real one or not.
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4.4.3 The Rule Editor
The graphical editor supports rule definition in a more comfortable way then the rule

compiler whose input is pure text. It provides a user friendly interface using icons or visu-

al representations that can be manipulated for generating rule definitions. For example,

during the definition of a composite event, the user can choose the appropriate operator

icon and the editor automatically demands the needed parameters. Obviously, text is indis-

pensable when defining the body of conditions and actions because source code is re-

quired.

4.4.4 The Rule Browser
The browser retrieves and shows individual rules, events, actions and conditions and al-

lows the selection of items which meet various desired criteria. It consists of four parts: a

rule, an event, a condition and an action browser. The rule browser shows the list of all

rules and for each selected rule the appropriate rule body. If an event, condition or action

is selected from the rule body description, the appropriate browser is activated by calling

retrieval queries over the rulebase.

5 Working with SAMOS

In this section, we describe how users and application programs can use SAMOS.

After SAMOS has been installed (which implies an operational installation of Object-

Store), databases for storing user data and information on rules must be created. The rule-

base is one part of the database. After the database has been created, the rulebase must be

initialized, i.e., the segment to store event objects must be created and indexes must be de-

fined.

Initialization is supported by methods of the classSamos (see Figure 13). These meth-

ods also allow some rudimentary tuning facilities. In order to set up a SAMOS applica-

tion, two modes can be chosen for initialization:

• A cold start creates the internal data structures of SAMOS (rule and event extents in-

cluding their indexes) as well as an ObjectStore database. The database will be empty

afterwards.

• A cold start for SAMOS only creates the internal data structures of SAMOS, but leaves

other user data untouched.

After SAMOS has been set up, the user can define ObjectStore classes, methods, and ap-

plication programs via the ObjectStore interfaces. Event descriptions and ECA-rules are

defined via one of the SAMOS interfaces (typically using the rule compiler or the rule ed-
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itor). Rule definitions update the rulebase and also the application code. Applications thus

have to be re-compiled after rule definitions.

At the beginning of each SAMOS application, SAMOS must be initialized in a mode

calledwarm start. During warm start, SAMOS opens data- and rulebases.

During initialization in either mode, two tuning parameters can be specified. Recall that all

the information related to event descriptions is clustered in an ObjectStore segment. Ob-

jectStore allows for the specification that in each access to an object of a segment, the en-

tire segment should be read (and thus transferred to the ObjectStore client’s cache). Albeit

the first access might then be more expensive, performance is improved whenever multi-

ple objects out of the same segment are accessed successively. Thus, the first tuning pa-

rameter specifies whether the entire event segment should be read whenever one event

object is retrieved. This parameter can be turned on and off during a SAMOS session.

Turning this parameter off means that only individually needed pages are read for each ac-

cess or query. Reading pages instead of the whole segment can be required if the client

cache is small and the event segment is very large. The segment size can be determined

using the methodSAMOS::get_info.

The second tuning parameter specifies whether the entire event segment should be

read upon initialization. In this case, it is assumed that the information on event descrip-

tions is already in main memory when the first event in a session occurs.

Admittedly, these tuning techniques are still rather simple. More powerful tuning tech-

niques and physical rulebase design are subjects to future work.

6 Evaluation of the SAMOS Prototype

In this section, we evaluate the implementation of SAMOS with respect to three criteria:

class Samos {
public:

static void initialize(s_Init_modes mode, //cold, warm, or Samos only
s_Fetch_Policy fMode, //fetch segment or pages
 s_Prefetch_Policy pMode, //prefetch desired?
char *dbname); //name of database

static void set_eseg_policy (s_Fetch_Policy  fMode,//fetch segment or pages
os_int32        numBytes);

static void get_info (int  *  eseg_size, //size of event segment
int  *  num_of_rules, //number of rules in the rulebase
int  *  num_of_events); //number of events in the rulebase

};

Figure 13: The Class Samos and its methods for Initialization and Tuning
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1. functionality: has it been possible to implement the intended functionality using the

layered approach?

2. construction efficiency: how costly has it been to design and implement SAMOS?

3. runtime efficiency: does the current implementation of SAMOS show satisfying runt-

ime performance?

6.1 Functionality

Advancedfunctionality as specified for SAMOS can be implemented through a layered ar-

chitecture, provided sufficient support by the underlying system exists. Albeit ObjectStore

is a black box for the upper layer, primitive and composite events can be detected. Since

ObjectStore provides for nested transactions, theimmediate and deferred coupling

modes as well as nested rule execution can be supported in their precise meaning. Addi-

tionally, we can provide recovery and concurrency control for triggered transactions (in-

cluding transaction-internal checkpoints). Note that these features cannot be implemented

on top of systems that support flat transactions only [31].

On the other hand, especially in the area of transaction management more functional-

ity of the underlying system would improve the SAMOS kernel. First, a parent transaction

is determined “syntactically” in ObjectStore as the transaction in which the request for the

new transaction was issued. If ObjectStore would allow to start new top-level transactions

in an asynchronous way, then the demon process would no longer be required. In this case,

thedecoupled coupling mode could be implemented more easily and efficiently. This ap-

proach would be more elegant since inter-process communication with the demon would

no longer be used, and more efficiently, since inter-process communication can be costly.

Second, SAMOS represents the Petri Net component as a complex database object

structure, thereby guaranteeing atomicity, durability, and isolation for transactions modi-

fying the event history. However, multiple transactions raising component events of the

same composite event description will thus block each other, or may even form deadlocks.

We thus would like to implement a more subtle concurrency control protocol for the Petri

Net component (comparable to dedicated concurrency control techniques for access

paths). This is hard to achieve in a layered approach, because the Petri Net-specific trans-

action management had to be integrated with the existing transaction management in Ob-

jectStore (recall that we cannot modify ObjectStore’s transaction manager).

Finally, the transaction concept of ObjectStore does not provide for parent/child and

sibling parallelism [27]. If the former were possible, a transaction could spawn a subtrans-
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action while proceeding with its own execution. Sibling parallelism allows subtransac-

tions of the same parent to execute in parallel. With parent/child parallelism, a triggering

transaction could proceed while its triggered transactions still execute. Likewise, internal

tasks such as composite event detection could be performed concurrently to the user trans-

actions, as is done in REACH [5]. Otherwise, a triggering transaction is blocked until the

last triggered transaction has terminated. With sibling parallelism, triggered transactions

whose executions are not constrained through priorities could be executed concurrently.

Otherwise, they must be executed sequentially. Obviously, this restriction increases block-

ing times of triggering transactions.

6.2 Construction Cost

The current implementation of the SAMOS kernel comprises approximately 20’000 lines

of C++-code. Most of the code has been spent for composite and time event detection. For

event object and rule object management, the facilities offered by ObjectStore have been

exploited (object management, clustering, database management). For retrieval of event

and rule objects, ObjectStore features for querying and indexing are used. Ultimately, only

slight extensions for transaction management have been necessary.

Summarizing, the layered approach of SAMOS is assessed as being construction effi-

cient, since all the “passive” functionality the SAMOS kernel requires has already been

available. Many components providing tasks like recovery or concurrency control which

are critical parts in from-scratch implementations are for free in the layered approach on

top of a DBMS.

6.3 Runtime Performance

The current SAMOS prototype has been evaluated with respect to performance. For that

matter, we have defined a benchmark for ADBMSs, called BEAST7 [25]. We sketch the

most important results here, for a detailed description, see [25]. Two observations can be

drawn from these tests:

1. they show how costly active functionality in SAMOS actually is,

2. they reflect the effects of optimizing the SAMOS system.

In the current state, the tests do not allow to asses SAMOS as being “fast” or “slow”. In

order to justify such statements, comparisons with other ADBMSs are required but are not

7.  BEnchmark for Active database SysTems
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yet available. Furthermore, a comparison of functionally equivalent applications (one ver-

sion implemented in a purely “passive” manner, the other one using active functionality)

must be performed, in order to identify the drawbacks or benefits of ADBMSs.

BEAST is a configurable benchmark; it proposes many tests which can be performed

for a given system — provided it offers the tested functionality at all. Tests exist for event

detection, rule retrieval, and rule execution. Typically, each test raises an event, which is

successively detected by the ADBMS and triggers a rule. In general, BEAST tests consid-

er entire rules, since it is assumed that for systems other than SAMOS itself we do not

have access to internal interfaces and thus cannot measure event detection or rule retrieval

separately. Since most tests focus on one of the three phases, BEAST tests keep the other

phases as simple as possible. For instance, tests for event detection have rules attached

with a simple condition that always evaluates tofalse.

Test ED-02 has been executed for method event detection. Another test (ED-04) exe-

cutes two transactions which in turn raise the same set of events such that buffering effects

of event objects can be observed. For composite events, BEAST contains tests forse-

quence (ED-06),negation (ED-07), thetimes-operator (ED-08), a sequence of in turn

composite events (ED-09) and a conjunction with asame restriction (ED-11).

Test RM-01 has been executed for rule retrieval, i.e., it focuses on the time it takes to

retrieve event and rule objects. Rule execution tests consider different coupling modes:

immediate (RE-01),deferred (RE-02), anddecoupled (RE-03). Test RE-04 measures

the execution of four rules all triggered by the same event. The execution order of these

rules is not constrained by means of priorities.

For each test, we consider four different rulebase sizes. The rulebase size is defined in

terms of dummy events/rules in addition to the set of events and rules required by BEAST.

The empty rule base contains zero dummy events and rules, the small one 50 dummy

events and rules, the medium one 250, and the large one 500 events.

In the first test series, the Samos Petri Net has been implemented “relationally”. In-

stead of using pointers for representing the Net structure, queries (joins) have been neces-

sary in order to traverse the Petri Net during the token game. Performance especially for

composite event detection thus has been quite poor.

In the subsequent version, pointers had been used for representing the Petri Net struc-

tures (as described in this paper), resulting in reasonable performance gains. In this ver-

sion, the prime performance problem has been event object retrieval, since the event

extent has neither been clustered nor indexed. After indexing and clustering (as described

above) have been added, more performance gains have been possible.
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The tests have been executed on a SUN server Sparc Model 5 under SUNOS 4.1.3.

The size of the ObjectStore cache has been 12 MB. Table 2 summarizes the measured

times (CPU-time in milliseconds). This table contains four results for each of the tests:

1. the results of the “non-pointered” version are given in the first row,

2. the second row contains results for the pointered version,

3. the third row reflects results for the indexed and clustered extents,

4. the last row shows results when the prefetching option is used

Rulebase Size (# Dummy Events), Results in Milliseconds

Test empty small medium large

ED-02

150 280 246 878

147 253 450 840

109 110 111 135

101 110 119 108

ED-04a

768 984 1472 1830

685 905 1438 1634

444 467 459 476

433 442 453 439

ED-04b

674 878 1080 1056

573 740 1039 940

376 375 380 394

373 366 380 359

ED-06

532 758 1210 2596

395 500 680 1066

317 391 369 384

308 341 364 355

ED-08

1090 1428 2480 4814

836 1000 1529 1724

752 768 756 819

740 742 769 769

Table 2. Performance Measurement Results for SAMOS
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Summarizing, significant performance improvements have been achieved. Especially, in

ED-09

1102 1494 2566 5350

819 973 1478 1639

693 724 739 757

709 716 753 729

ED-11

428 538 1142 1826

357 469 800 1076

325 347 340 350

309 327 345 328

RM-01

164 176 358 184

154 256 438 179

118 124 122 134

101 118 104 134

RE-01

152 272 588 266

157 200 562 203

119 130 122 150

103 105 104 122

RE-02

178 252 476 232

157 205 506 197

113 127 105 150

102 118 114 129

RE-03

— — — —

152 216 449 170

104 118 122 151

102 109 103 126

RE-04

384 550 496 1296

325 353 660 1072

159 169 154 188

156 134 157 171

Rulebase Size (# Dummy Events), Results in Milliseconds

Test empty small medium large

Table 2. Performance Measurement Results for SAMOS
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the last two versions SAMOS scales better than in the previous ones, i.e., the curve relat-

ing execution times to rulebase size has a much smaller slope.

We are currently implementing BEAST on other object-oriented ADBMSs in order to

compare the performance of SAMOS with that of other systems. We are also currently

comparing active and “passive” implementations of the same application with respect to

performance. Additionally, more subtle tuning and clustering techniques in SAMOS are a

subject of future work (e.g., clustering of Petri Net parts).

7 Conclusion

This paper has described the comprehensive architecture of the SAMOS active DBMS.

We have presented a layered approach on top of an object-oriented DBMS for its imple-

mentation and reported on experiences with it. Hence, the overall contribution of this pa-

per is twofold:

• it contributes to the knowledge about how to design active, object-oriented DBMSs,

and

• it shows that the layered approach is feasible at least for prototype systems, provided

basic DBMS-mechanisms are supported.

Our experience with the layered SAMOS architecture is that the desired functionality can

be implemented at reasonable costs. The SAMOS prototype described here is operational

and is publicly available. It enables us to experiment with SAMOS in sample application

domain requiring reactive behavior [24, 26, 45]. We have full control of the add-on layer

and can extend it at our will whenever necessary. Due to the still missing comparative per-

formance figures of other systems, we cannot definitely assess the runtime performance of

SAMOS. Nevertheless, we have a vehicle for improving our understanding of perfor-

mance issues, optimization, and tuning techniques of ADBMSs as well as the operational

prototype that allows us to verify our observations and prospective improvements.

After the first release, our future work on SAMOS will focus on several areas:

• we will continue our investigation ofADBMS-applications (e.g., banking, workflow

management),

• we will address usability aspects of ADBMSs (tool support for ADBMSs),

• we will consider runtime performance in more detail and investigate optimizations,

tuning facilities, and redesigns of some components, and

• finally we will develop extensions of the existing prototype, e.g. to support distribu-

tion.
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